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Summary. A three-dimensional object of interest in an engineering analysis, using
mesh-based computational technology, requires watertight surface geometry. How-
ever, obtaining watertight surfaces is challenging due to presence of deficiencies or
artifacts such as gaps, holes etc. on the surfaces. This research note presents im-
plementation of a volumetric approach for repairing those surfaces which otherwise
could not simply be repaired using existing surface-based techniques due to the
geometric and topological complexities of holes. The geometry repair approach is
based on diffusion equation solved using CFD techniques based on explicit forward
difference scheme in time and central difference scheme in space. An algebraic in-
terpolation approach using coarse grid to initialize the flow field for the fine grid
has been implemented to speed up solution convergence. Additionally the solver has
been multi-threaded using OpenMP library to further speed up the solution process.
The result of the solution process and the performance gain using multi-threading
has also been demonstrated.

Keywords: geometry repair, volume based approach, volumetric diffusion,
OpenMP.

1 Introduction

Preprocessing steps in simulations using mesh-based computational tech-
nologies, such as Computational Fluid Dynamics (CFD) and Computational
Structural Mechanics (CSM), involve geometry preparation and mesh gener-
ation. However, it has been a challenging task to take a geometry and turn
it into a high quality mesh. This is because there could be deficiencies in ge-
ometry and the configuration of the geometry can make the entire process
difficult. Such deficiencies can be in the forms of gaps, holes, protrusions or
intersection and overlaps. Repairing deficiencies in the geometry can be a te-
dious and laborious process. Therefore, how to obtain a watertight geometry
ready for mesh generation is an important issue in computational engineering.
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Regardless of the source of the geometry data, or the form in which they are
represented (parametrically or discretely), the geometries obtained can have
many defects due to the data conversion errors or ambiguities in the process.

The most common type of mesh defects or artifacts encountered are holes
or isles, singular vertex, handle, gaps and small overlaps, large overlaps, incon-
sistent orientation, complex edges and intersections [1]. Some of these artifacts
like complex edges have a precise meaning while the distinction between small
scale and large scale overlaps are described intuitively rather than by strict
definition. A number of research papers have tried different approaches in an
attempt to address this issue in a more automated and intelligent manner.
These approaches broadly fall in two main categories: volume-based repair
methods and surface-based repair methods.

The key to all volume based methods lies in converting a surface model
into an intermediate volumetric representation from which the output model
is then extracted. A flag at each voxel of the volumetric representation is
generated representing whether the particular voxel lies inside, outside or on
the surface of the geometry. The interface between inside and outside cells
then define the topology and geometry of the reconstructed model. Due to
their very nature, volumetric representations do not allow for artifacts like
intersections, holes, gaps or overlaps or inconsistent normal orientation [1].
Volumetric algorithms are typically fully automatic and produce watertight
models and depending on the type of volume, they can often be implemented
very robustly.

Due to their very nature, volumetric representations do not allow for ar-
tifacts like intersections, holes, gaps or overlaps or inconsistent normal ori-
entation. Volumetric algorithms are typically fully automatic and produce
watertight models and depending on the type of volume, they can often be
implemented very robustly. As a result in some cases it becomes necessary to
use volume based approach to repair model. In this work we are working on
developing a robust and fully automatic volume based repair method which
could handle dirty geometry with holes, isles and intersections which is based
on numerical solution of Diffusion Equation in a 3D volume grid.

2 Diffusion Equation

Diffusion is a time-dependent process, constituted by random motion of given
entities and causing the statistical distribution of these entities to spread
in space. The concept of diffusion is tied to notion of mass transfer, driven
by a concentration gradient. The diffusion equation can be obtained easily
from Continuity equation when combined with the Fick’s first law. Diffusion
equation is a partial differential equation continious in both space and time
and can be simplified and written as,

∂φ

∂t
= α∆2φ (1)
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Where α is a constant. Using forward difference scheme in time and central
difference scheme in space based on Taylor’s series expansion, the diffusion
equation for a Cartesian grid simplifies to,
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where ∆x,∆y and ∆z are the grid spacings of a Cartesian grid in x, y
and z directions respectively. Equation (2) provides the explicit numerical
solution which is central difference in space and forward difference in the time
domain for the diffusion equation given in equation (1).

After performing stability analysis on our numerical scheme using Von
Neumanns analysis and Courant–Friedrichs–Lewy (CFL) condition for the
stability of the numerical scheme in three dimensions (3D), we come with the
inequality defining the range of values for the constants given in equation (2).

0 ≤ α∆t <
∆x2

min

6
(3)

We define the Cartesian grid with the analogy of a curved thin plate in 3D
space whose one side is heated while the other side is cold. Diffusion equations
presented earlier are used to find a steady state solution.

(a) surface with numerous holes and
complex topology

(b) Watertight surface after running
the solver and extracting surface mesh

Fig. 1. Front view of the Ear Data
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3 Result

The diffusion solver was run on a linux machine against a number of non-
manifold models. One of these is what we call as the “Ear Data”. This surface
model was obtained by scanning the face of a patient at UAB hospital. The
scan came with a number of discontinuities, islands and overlaps, which left
much to be desired. Figure 1(a) , in the left, shows rendering of the original
surface. Figure 1(b) shows the surfaces obtained from Cartesian grid after
running the solver. The coarse and fine Cartesian grids had resolutions of
72x90x100 and 285x360x400 voxels respectively. In this problem, the solver
was run for 3000 iteration on a coarse Cartesian grid and 200 iterations on
the finer Cartesian grid. The result of the diffusion solver from the coarse
Cartesian grid was interpolated on the finer Cartesian grid as the initial value
for the solver to obtain a faster convergence of the numerical solution.

Fig. 2. Plot of number of threads vs. Ssolution time using OpenMP library for
multi-threading

This approach has inherent parallelism as we are using Carteisan grids.
Our code was run both in single threaded multi threaded configuration using
OpenMP library for assessing performance gain. Figure 2 shows the plot of
number of threads vs. Solution time for the solver. What we are interested
in the wall-clock time required for the solver to run. We notice that with the
number of the threads as four, the solution time is minimum for the particular
example. The repaired surface is extracted as a post processing step after
numerical solution has been obtained. Marching Cubes algorithm [2] has been
used for surface extraction from Cartesian grid. It could however be noticed
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that Marching Cubes introduces aliasing artifacts (staircasing) on the surface
as the algorithm is feature insensitive.

4 Conclusion

We have presented a volume based approach which tries to repair a discrete
geometry by solving diffusion equations. The work is still in progress. However
for proof of concept we have voxelized the whole discrete geometry into one
single Cartesian grid while running the solver. We have shown the result of
our method using a model with complex topology.

Volume based approaches like the one described in this research can be
used to repair the models with artifacts that surface based models otherwise
cannot robustly handle. They however also pose some potential problems. The
conversion to and from a volume leads to resampling of the model. It however
often introduces aliasing artifacts, loss of model features and destroys any
structure that might have been present in the connectivity of the input model.
The focus of this work is to address the need to develop a method to obtain a
watertight geometry from a geometric model that has the presence of holes of
complex topology. Despite all their shortcomings volumetric algorithms can
solve some problems of complex topology robustly in geometry repair which
is not possible in surface based approaches.
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